Valley-engineered ultra-thin silicon for high-performance junctionless transistors
نویسندگان
چکیده
منابع مشابه
Valley-engineered ultra-thin silicon for high-performance junctionless transistors
Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from...
متن کاملSilicon for thin-film transistors
We are standing at the beginning of the industrialization of flexible thin-film transistor (TFT) backplanes. The two important research directions for the TFTs are (i) processability on flexible substrates and (ii) sufficient field-effect mobilities of electrons and holes to support complementary metal insulator semiconductor operation. The most important group of TFT capable semiconductors are...
متن کاملJunctionless ferroelectric field effect transistors based on ultrathin silicon nanomembranes
The paper reported the fabrication and operation of nonvolatile ferroelectric field effect transistors (FeFETs) with a top gate and top contact structure. Ultrathin Si nanomembranes without source and drain doping were used as the semiconducting layers whose electrical performance was modulated by the polarization of the ferroelectric poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] th...
متن کاملInvestigation of the Performance of Carbon Nanotube and Silicon Nanowire Junctionless Transistors using First–Principle Calculations
In this work, we present atomic scale simulation of junctionless semiconducting single–walled carbon nanotubes field effect transistors (CNT–FETs) and compare their performance to silicon nanowire (SiNW) transistors with similar dimensions. The energy dispersions relations for p–type SiNW and CNT are compared. The response of the transistors to source–drain bias and gate voltage is explored. Co...
متن کاملMetal-Gated Junctionless Nanowire Transistors
Junctionless Nanowire Field-Effect Transistors (JNFETs), where the channel region is uniformly doped without the need for source-channel and drain-channel junctions or lateral doping abruptness, are considered an attractive alternative to conventional CMOS FETs. Previous theoretical and experimental works [1][2] on JNFETs have considered polysilicon gates and silicon-dioxide dielectric. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep29354